B022314(022)

B. Tech. (Third Semester) Examination, Nov.-Dec. 2020

(Computer Science and Engg. Branch)

DIGITAL ELECTRONICS and LOGIC DESIGN

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt all questions. Each question carries equal makers. Part (a) is compulsory and answer any two parts from (b), (c) and (d).

- - B022314(022)

(b) Solve the following using K-map:

PTO

- (i) $FI(A, B, C, D) = \Sigma m(1, 5, 6, 12, 13, 14) + \Sigma d(24)$
- (ii) $F2(A, B, C, D) = \Pi m(0, 1, 2, 4, 6, 8, 9, 11, 12)$
- (c) Simplify the following using Tabulation method: 8

$$F(A, B, C, D) = \Sigma m(1, 3, 5, 8, 9, 11, 15) + d(2, 13)$$

- (d) The message below coded in the 7-bit hamming code is transmitted through channel. Decode the message assuming that single error occurred in each code word.
 - (i) 1001001
 - (ii) 0111001
 - (iii) 1110110
 - (iv) 0011011

Find the correct code in each case.

- 2. (a) Compare RTL, DTL, TTL and ECL on the basis of: 4
 - (i) Component used
 - (ii) Fan out the little those recupes summer than
 - (iii) Propagation delay and
 - (iv) Application

- (b) With the help of neat diagram, explain the working of:
 - CMOS inverter and
 - (ii) CMOS NOR gate

8

8

- (c) Explain the working of TTL circuit with Totem pole output configuration.
- (d) Implement the fgollowing Boolean function using:
 - (i) PLA
 - (ii) PLA

$$F1(A, B, C) = \Sigma m(3, 4, 5, 6, 7)$$

$$F2(A, B, C) = \Sigma m(2, 5, 6, 7)$$

3. (a) Fill in the blanks:

- (i) consists of logic gates where output at any instant is determined by present combination of input as well as previous state of output.
- (ii) is an example of combinational circuit.
- (iii) Logical expression of carry out in half adder is

[4]

		(iv) Minimum number of NAND gates required for designing Half Adder is	
	(b)	Design 4-bit look ahead carry adder with suitable diagram.	8
	(c)	Design full adder using 4: 1 MUX.	8
	(d)	Design and implement comparator.	8
1.	(a)	Convert SR flip-flop to T flip-flop.	4
	(b)	What is race around condition for J-K flip-flop? How it can be avoided in master slave flip-flop?	8
	(c)	Design and implement 4 bit synchronous up counter.	8
	(d)	Design Serial in Serial Out (SISO) and parallel in Serial Out (PISO) shift register using D flip-flop.	. 8
5.	(a)	Discuss the various operators used in VHDL.	4
	(b)	Write short notes on Mealy and Moore machine.	8
	(c)	Write a program in VHDL using data flow modelling for half adder.	8
		oblan Hjul je zam gjunje to mjessom, ov lezdem 1 (al)	
	(d)	Write a program in VHDL using behavioural modelling for AND gate.	8

B022314(022)

100]